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~ Search for Low-Noise Feed Horns:
Situation in 1960s

S

Desired Characteristics:

s High Efficiency

¢ Co-polar Pattern Symmetry

** Low (-30 dB or better) sidelobes

Among various structures invented, perhaps the most notable,
most ingenious were:

(1)DiagonalHorn(1962)—a shaped-aperture horn

(2)PotterHorn(1963)—a dual-mode conical horn.
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Rectangular waveguide to diagonally
polarized horn — Mode transducer

The field patternin
the aperture
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“ Diagonal Horn

It is a small-flare shaped-aperture (square-aperture) pure-
mode horn that is diagonally polarized.

¢ The co-polar pattern is almost circularly symmetric, but

¢ the peak cross-polar level is as high as -16 dB in the + 45°
planes.

¢ The sidelobes in the principal planes are about -20 dB.
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\_.,/“’/Potter Horn
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Potter horn used both circular TE,; and TM,; modes in proper
amplitude ratio to achieve

* aperture distribution tapered to zero in all planes,
complete beam-width equalization in all planes,

complete phase-centre coincidence in all planes,

at least -30 dB sidelobe level in E-plane.

H-plane performance remains unchanged.

Disadvantages:

\J

% Narrowband

% Since TM,, does not radiate axially, Potter horn has lower
gain than a TE, horn of same aperture size.

¢ Elaborate design procedure.

o0

53

*

e

*

e

*

/
‘0

L)






_/Wide-Flare Conical Horn: A. F. Kay (1962)

“”"’f/ ¢ Such horns are characterized by A (the maximum phase -~
9 deviation of spherical phase front from aperture plane) > A/2 ,

unlike “diffraction limited” horns with A<A/2.

Phase centres are at the throat of the horn.

Patterns have virtually no sidelobes.

Beamwidth, to first approximation, is independent of A.

At 0=0, (Half Flare Angle), E-plane pattern level is 6-9 dB

depending on 0,and independent of A; in H-plane it is 13-25

dB depending on 0,and slightly on Flare Length/A ratio.

* Heavy E-plane edge illumination spoils phase-centre
coincidence and lowers secondary aperture efficiency. o

e

*

S

0

/
‘0

L)

e

*

L)

L)

N Qs



Phase Centre Location in Feedhorn

When a feed with widely separated E-plane and H-plane

phase centres illuminates a reflector, there is inevitable
axial de-focusing. This -

* reduces the antenna gain,

= raises the side-lobe level in a symmetrical way,

* and, most importantly in some applications, raises the
peak level of cross-polarization in the 45° plane.
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__AVide-Flare Corrugated Conical Horn: A. F. Kay (1964)

S

¢ If the inner wall of wide-flare conical horn was corrugated
with transverse grooves that present capacitive series
reactance to the incident field in the E-plane, radiation
patterns are almost symmetrical over a broad frequency
band.

¢ This indicated that the boundary conditions for the radially
flowing field are the same in every axial plane independent of
polarization.

> This was explained from an analogy with plane corrugated
surface.
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"+ 1If a plane wave, traveling transverse to the grooves on a
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plane corrugated surface, is incident at an angle y to the
perpendicular to the surface, the reflection coefficients for
TE/TM waves are given by

RTE —_ —1

cos P+jX

R =
™ = ¢os P—jX

where X is the surface reactance.

saha.pradipk@gmail.com 2/8/2021

S’
Nr e\



In the limit y — 90° R,y = Ry, — -1. Implication: on the
corrugated surface, tangential components of both E and H
vanish.

This can be true for
capacitive(X<0) surfaces.
Inductive surface is inappropriate for antenna applications
as it supports surface waves which do not vanish on the
surface. Only capacitive surface is desirable.

Thus, a boundary condition which is independent of
polarization, produces a field that is independent of
polarization. Accordingly, such a feed was named -

SCALAR FEED.

both inductive (X>0) and
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Scalar Feed
Half Flare Angle - 70°
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A. F. Kay (1964)



\__// Hybrld Mode Waveguide Feed:
Minnett and Thomas (1966)

S

¢ Study of the focal field of a circularly symmetric parabolic
reflector, illuminated by a linearly polarized plane wave,
together with the concept of symmetric radiation field led to
the development of hybrid mode waveguide feeds.

* The scattered field at the focal plane of the reflector is a
superposition of axially propagating hybrid waves that were
identified with the fast hybrid modes of unit azimuthal
dependence in a transversely corrugated circular waveguide.
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_~» It was shown that a waveguide to support the focal-field

hybrid waves, its boundary must satisty X,.X, = - No%, Where
X, is longitudinal surface reactance and X, is circumferential
surface reactance, 1, is free-space wave impedance.

Transversely corrugated surface with appropriate groove
depth and sufficient number of corrugations per wavelength,
approximately satisfies this condition with X,= o and X.= 0.

The condition can also be satisfied by longitudinally grooved
surface with X, = 0 and X,= c. However, with such boundary,
the waveguide would support pure TM,, K modes and hence
would be unsuitable.
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In this backdrop,
P.J.B.Clarricoats and his research student
Pradip Kumar Saha entered the fray in 1968.

Aim: Study of Propagation and Radiation
Characteristics of Fast Waves in Corrugated
Circular Waveguides and Corrugated
Conical Horns
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* Characteristic Equation
* Circularly Symmetric Modes

* Azimuthally Dependent
Hybrid Modes

* Dispersion Diagrams

* Balanced Hybrid Condition

Study of Fast Wave Propagation in
sversely Corrugated Circular Waveguide

Lowest Hybrid Mode HE,,

e Field Pattern

* Power Flow

e Aftenuation

o

Slot Depth g=r,-r,,
— Slot/Width=d
Nt




— Balanced Hybrid Condition
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Perfect pattern symmetry and zero cross-polarization
occur at the design frequency under ‘“Balanced
Hybrid” condition (BHC), when the corrugation depth
is about one quarter of the wavelength.

For large apertures (large waveguide radii), slot depth
g (for BHC) = A/4. For small apertures g>0.25A, being =~
0.3\ for 2A aperture.

Example: For a 10 GHz horn with aperture diameter of
3\, slot depth of 0.3A, peak cross-polar level in 45°
plane is —47 dB.

saha.pradipk@gmail.com 2/8/2021 18 \/

N bt ).



— Dimensionless Hybrid Factor A

g A= & . (ﬁmn/kO)
I, T T Fonkeemn/TD)
/
- 1t

A=0 for TMmodes; 1/A=0 for TE modes
=+1 for hybrid modes under BHC

Upper sign for HE _ modes
Lower sign for EH__ modes
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Attenuation in Corrugated Circular Waveguide

The Theoretical attenuation of HE;, mode under
balanced hybrid condition and over a band around the
frequency corresponding to BHC can be lower than
the attenuation in a TE,, circular waveguide of same
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Low-loss corrugated circular waveguide
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P.]J.B. Clarricoat & P.K. Saha, “"Attenuation in Corrugated
Circular Waveguide,” Elect. Lett., Vol.12, pp.370-2,
1970.

The Chinese University of Hong Kong
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* Far-field Pattern by
Kirchhoft-Huygen Integration

* Hybrid Mode Radiation Fields
* HE,; Mode Radiation Patterns

* Performance of Parabolic
Reflector with Corrugated
Waveguide Feed

Radiation From Corrugated Circular Waveguide

* An Experimental Narrow-
Flare (12° half flare)
Corrugated Horn

* Measured Patterns and Input
VSWR: 8.5 - 11.0 GHz

S’



BALANCED HYBRID PATTERN
7=0.245
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Theoretical Radiation

‘\‘;\ Patterns of HE,; Mode

| | in Corrugated Circular
= | Waveguide under BHC
i and at 1.5 times higher

frequency
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- “Narrow Flare Corrugated Conical Horn
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| ~  Theoretical and Measured Patterns of
e Experimental 12° Half Flare Horn CJ
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10.0 GHz
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11.0 GHz

10.5 GHz
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K{ | Measured Input VSWR -/
o o at the throat of the
3 Experimental Narrow
Flare Horn of 12° Half
20 Flare Angle as Function

of Frequency

VSWR

FREQ IN GHz
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Theoretically computed .~
Reflection Coefficient at

the junction of a TE,,
circular waveguide and a
corrugated circular
waveguide as a function

of normalized frequency

for various waveguide
parameters
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N Propagation and Radiation Characteristics of

Wide-flare Corrugated Conical Horn

* Spherical Hybrid Modes in the < Performance of Parabolic
Horn and Aperture Field Reflector with Scalar Feed

* Far-field pattern by vector * An Experimental 30° Half-Flare
diffraction

* Radiation Field by Spherical
Wave Expansion

Corrugated Conical Horn
* Experimental Results

- Computation of Phase-Centre ~ Yi°dified Scalar Horn with

Location

* Lens-corrected Scalar Feed
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Corrugations only near Aperture
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Wide Flare
Corrugated
Conical Horn

Impedance
boundary
condition
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Theoretical Radiation
Pattern of Corrugated
Horn of 70° Half Flare
Angle agrees almost
exactly with
experimental data of
Kay’s Scalar Horn



-l (BHC)

kR =375

0, = 70°
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~I'E MODAL EXPANSION

k ~~==--- KIRCHHOFF = HUYGEN
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Structural Details of
the Experimental
Scalar Feed of 30°
Half Flare Angle




L / Theoretical and Measured Patterns of Experimental 30° Half Flare Horn
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Modified Wide-Flare
Corrugated Conical Horn
with Corrugations only
near the Aperture

Excitation of Hybrid
Modes in Corrugate




| \/ Excitation of Modified Conical Scalar Horn
J P_/P. in for first six modes

P_/P,, in per cent

0,=30° 6,=40° ©6,=50° ©0,=60° =70

1 83.87 83.36 82.67 81.79 80.67
2 4.39 4.56 4.80 5.11 5.53
3 3.59 3.69 3.81 3.96 4.13
4 1.36 1.40 1.46 1.54 1.64
5 1.27 1.31 1.35 1.41 1.49
6 0.68 0.70 0.73 0.76 0.81
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\_,/’Modiﬁed Scalar Feed: Observations from Computed results

— % Mode-matching equations were solved with 6 modes each in
corrugated and un-corrugated sections for different flare
angles.

*¢* The reflection coetficient of the incident TE,, mode and
excitation of higher order modes in un-corrugated section
are negligible.

*¢ The fraction of the incident power transferred to the modes
in the corrugated section decreases sharply for the higher
order modes and is less than 1% for the 6" mode.






