BREAKTHROUGH IN CORRUGATED CONICAL HORN RESEARCH IN QUEEN MARY COLLEGE. UNIVERSITY OF LONDON DURING LATE 1960'S REAKTHROUGH IN CORRUGATED
NICAL HORN RESEARCH IN QUEEN
Y COLLEGE. UNIVERSITY OF LONDON
DURING LATE 1960'S
A REMINISCENCE BY PRADIP KUMAR SAHA

Search for Low-Noise Feed Horns: Situation in 1960s

Desired Characteristics:

- ❖ High Efficiency
- Co-polar Pattern Symmetry
- Low (-30 dB or better) sidelobes

Search for Low-Noise Feed Horns:

Situation in 1960s

Desired Characteristics:

* High Efficiency

* Co-polar Pattern Symmetry

* Low (-30 dB or better) sidelobes

Among various structures invented, perhaps the most notabl Search for Low-Noise Feed Horns:

Situation in 1960s

Desired Characteristics:

* High Efficiency

* Co-polar Pattern Symmetry

* Low (-30 dB or better) sidelobes

Among various structures invented, perhaps the

most ingen Situation in 1960s

Desired Characteristics:
 \div High Efficiency
 \div Co-polar Pattern Symmetry
 \div Low (-30 dB or better) sidelobes

Among various structures invented, perhaps the most notable,

most ingenious were:
 Situation in 1960s

Desired Characteristics:
 \div High Efficiency
 \div Co-polar Pattern Symmetry
 \div Low (-30 dB or better) sidelobes

Among various structures invented, perhaps the most notable,

most ingenious were:

Diagonal Horn

It is a small-flare shaped-aperture (square-aperture) puremode horn that is diagonally polarized.

- **☆ The co-polar pattern is almost circularly symmetric, but**
- the peak cross-polar level is as high as -16 dB in the \pm 45^o planes.
- \div The sidelobes in the principal planes are about -20 dB.

Potter Horn

Potter Horn
 Potter Horn

Potter horn used both circular TE_{11} and TM_{11} modes in proper

amplitude ratio to achieve
 \div aperture distribution tapered to zero in all planes, Potter Horn

Potter horn used both circular TE_{11} and TM_{11} mode

amplitude ratio to achieve
 \div aperture distribution tapered to zero in all plane
 \div complete beam-width equalization in all planes, **Potter Horn**
 Potter Horn
 **Potter horn used both circular TE₁₁ and TM₁₁ modes in proper

amplitude ratio to achieve
** \bullet **aperture distribution tapered to zero in all planes,
** \bullet **complete beam-width equalization Potter Horn**
 Potter Horn
 **Potter horn used both circular TE₁₁ and TM₁₁ modes in proper
** \bullet **aperture distribution tapered to zero in all planes,
** \bullet **complete beam-width equalization in all planes,
** \bullet **comple Potter Horn**
 Potter horn
 Potter horn
 Potter horn
 complitude ratio to achieve
 \bullet aperture distribution tapered to zero in all planes,
 \bullet complete beam-width equalization in all planes,
 \bullet complete pha Potter Horn

Potter Horn

Potter horn used both circular TE_{11} and TM_{11} modes in proper
 \div aperture distribution tapered to zero in all planes,
 \div complete beam-width equalization in all planes,
 \div complete **Potter Horn**
 Potter Horn
 **Potter horn used both circular TE₁₁ and TM₁₁ modes in proper

amplitude ratio to achieve
** \div **aperture distribution tapered to zero in all planes,
** \div **complete beam-width equalization**

-
-
-
-
-

Disadvantages:

- Narrowband
- Potter horn used both circular TE₁₁ and TM₁₁ modes in proper
amplitude ratio to achieve
 $\hat{\mathbf{v}}$ aperture distribution tapered to zero in all planes,
 $\hat{\mathbf{v}}$ complete beam-width equalization in all planes,
 \hat plitude ratio to achieve

aperture distribution tapered to zero in all planes,

complete beam-width equalization in all planes,

complete phase-centre coincidence in all planes,

at least -30 dB sidelobe level in E-plane. • aperture distribution tapered to zero in all planes,
• complete beam-width equalization in all planes,
• complete phase-centre coincidence in all planes,
• at least -30 dB sidelobe level in E-plane.
• H-plane performanc
-

Wide-Flare Conical Horn: A. F. Kay (1962)

- Wide-Flare Conical Horn: A. F. Kay (1962)
 \div Such horns are characterized by Δ (the maximum phase

deviation of spherical phase front from aperture plane) > $\lambda/2$,

unlike "diffraction limited" horns with $\Delta < \lambda/2$ ide-Flare Conical Horn: A. F. Kay (1962)
Such horns are characterized by Δ (the maximum phase deviation of spherical phase front from aperture plane) > $\lambda/2$,
unlike "diffraction limited" horns with $\Delta < \lambda/2$.
Phase c ide-Flare Conical Horn: A. F. Kay (1962)
Such horns are characterized by Δ (the maximum phase \bigcirc
deviation of spherical phase front from aperture plane) > $\lambda/2$,
unlike "diffraction limited" horns with $\Delta < \lambda/2$.
P Wide-Flare Conical Horn: A. F. Kay (1962)
 \div Such horns are characterized by Δ (the maximum phase

deviation of spherical phase front from aperture plane) > $\lambda/2$,

unlike "diffraction limited" horns with $\Delta < \lambda/2$ Wide-Flare Conical Horn: A. F. Kay (1962)
 \div Such horns are characterized by Δ (the maximum phase

deviation of spherical phase front from aperture plane) > $\lambda/2$

unlike "diffraction limited" horns with $\Delta < \lambda/2$. Wide-Flare Conical Horn: A. F. Kay (1962)
 \div Such horns are characterized by Δ (the maximum phase

deviation of spherical phase front from aperture plane) > $\lambda/2$,

unlike "diffraction limited" horns with $\Delta < \lambda/2$
-
-
-
- e Conical Horn: A. F. Kay (1962)

rns are characterized by Δ (the maximum phase \bigcirc

of spherical phase front from aperture plane) > $\lambda/2$,

iffraction limited" horns with $\Delta < \lambda/2$.

ntres are at the throat of the ho ide-Flare Conical Horn: A. F. Kay (1962
Such horns are characterized by Δ (the
deviation of spherical phase front from apert
unlike "diffraction limited" horns with $\Delta < \lambda$ ".
Phase centres are at the throat of the horn cal Horn: A. F. Kay (1962)

characterized by Δ (the maximum phase

rical phase front from aperture plane) > $\lambda/2$,

on limited" horns with $\Delta < \lambda/2$.

e at the throat of the horn.

rtually no sidelobes.

irst approxim ide-**Fiare Conical Horn:** A. F. Kay (1962)
Such horns are characterized by Δ (the ma
deviation of spherical phase front from aperture
unlike "diffraction limited" horns with $\Delta < \lambda/2$.
Phase centres are at the throat o **Horn: A. F. Kay (1962)**

iaracterized by Δ (the maximum phase \odot

al phase front from aperture plane) $>\lambda/2$,

imited" horns with $\Delta < \lambda/2$.

t the throat of the horn.

ally no sidelobes.

approximation, is indepen • Such horns are characterized by Δ (the maximum phase
deviation of spherical phase front from aperture plane) > $\lambda/2$,
unlike "diffraction limited" horns with $\Delta < \lambda/2$.
• Phase centres are at the throat of the horn. deviation of spherical phase front from aperture plane) > $\lambda/2$,
unlike "diffraction limited" horns with $\Delta < \lambda/2$.
Phase centres are at the throat of the horn.
Patterns have virtually no sidelobes.
Beamwidth, to first a
-

Phase Centre Location in Feedhorn

When a feed with widely separated E-plane and H-plane **Phase Centre Location in Feedhorn
When a feed with widely separated E-plane and H-plane
phase centres illuminates a reflector, there is inevitable**
axial de-focusing. This -**Phase Centre Location in Feedhorn**

When a feed with widely separated E-plane and H-plane

phase centres illuminates a reflector, there is inevitable

axial de-focusing. This -
 reduces the antenna gain, **Phase Centre Location in Feedhorn

Phase Centre Location in Feedhorn

When a feed with widely separated E-plane and H-plan

phase centres illuminates a reflector, there is inevitabl

axial de-focusing. This -

reduces the Phase Centre Location in Feedhorn

When a feed with widely separated E-plane and H-plane

phase centres illuminates a reflector, there is inevitable

axial de-focusing. This -

" reduces the antenna gain,

" raises the si Phase Centre Location in Feedhorn**

When a feed with widely separated E-plane and H-plane

phase centres illuminates a reflector, there is inevitable

axial de-focusing. This -
 raises the side-lobe level in a symmetrica Phase Centre Location in Feedhorn

When a feed with widely separated E-plane and H-plane

phase centres illuminates a reflector, there is inevitable

axial de-focusing. This -
 reduces the antenna gain,
 raises the si sole Centre Location in Feedhorn

1 and a feed with widely separated E-plane and H-plane

1 as executres illuminates a reflector, there is inevitable

1 alde-focusing. This -

1 reduces the antenna gain,

1 raises the side

-
-
- phase centres illuminates a reflector, there is inevitable
axial de-focusing. This -

 reduces the antenna gain,

 raises the side-lobe level in a symmetrical way,

 and, most importantly in some applications, raises th

Wide-Flare Corrugated Conical Horn: A. F. Kay (1964)
→ If the inner wall of wide-flare conical horn was corrugated

- Vide-Flare Corrugated Conical Horn: A. F. Kay (1964)

 If the inner wall of wide-flare conical horn was corrugated

with transverse grooves that present capacitive series

reactance to the incident field in the E-plane, r ide-Flare Corrugated Conical Horn: A. F. Kay (1964)
If the inner wall of wide-flare conical horn was corrugated
with transverse grooves that present capacitive series
reactance to the incident field in the E-plane, radiati ide-Flare Corrugated Conical Horn: A. F. Kay (1964)

If the inner wall of wide-flare conical horn was corrugated

with transverse grooves that present capacitive series

reactance to the incident field in the E-plane, radi ide-Flare Corrugated Conical Horn: A. F. Kay (1964)

If the inner wall of wide-flare conical horn was corrugated

with transverse grooves that present capacitive series

reactance to the incident field in the E-plane, radi band. Wide-Flare Corrugated Conical Horn: A. F. Kay (1964)
 \div If the inner wall of wide-flare conical horn was corrugated

with transverse grooves that present capacitive series

reactance to the incident field in the E-plane ide-Flare Corrugated Conical Horn: A. F. Kay (1964)

If the inner wall of wide-flare conical horn was corrugated

with transverse grooves that present capacitive series

reactance to the incident field in the E-plane, rad **∴** If the inner wall of wide-flare conical horn was corrugated with transverse grooves that present capacitive series reactance to the incident field in the E-plane, radiation patterns are almost symmetrical over a broad
- polarization.
- surface.

 \bullet If a plane wave, traveling transverse to the grooves on a plane corrugated surface, is incident at an angle ψ to the perpendicular to the surface, the reflection coefficients for If a plane wave, traveling transverse to the grooves on a
plane corrugated surface, is incident at an angle ψ to the
perpendicular to the surface, the reflection coefficients for
TE/TM waves are given by If a plane wave, traveling transverse to the grooves on a
plane corrugated surface, is incident at an angle ψ to the
perpendicular to the surface, the reflection coefficients for
TE/TM waves are given by If a plane wave, traveling transverse to the grooves on
plane corrugated surface, is incident at an angle ψ to the
perpendicular to the surface, the reflection coefficients fo
TE/TM waves are given by
 $R_{\text{max}} = -1$

$$
R_{TE} = -1
$$

$$
R_{TE} = -1
$$

\n
$$
R_{TM} = \frac{\cos \psi + jX}{\cos \psi - jX}
$$

\nwhere X is the surface reactance.
\n^{2/8/2021}

where X is the surface reactance.

- \therefore In the limit $\psi \to 90^\circ$, $R_{TE} = R_{TM} \to -1$. Implica
corrugated surface, tangential components of bovanish. , $R_{TE} = R_{TM} \rightarrow -1$. Implication: on the
angential components of both E and H In the limit $\psi \rightarrow 90^{\circ}$, $R_{TE} = R_{TM} \rightarrow -1$. Implication: on the corrugated surface, tangential components of both E and H vanish.
This can be true for both inductive (X>0) and vanish. → In the limit $\psi \rightarrow 90^{\circ}$, $R_{TE} = R_{TM} \rightarrow -1$. Implication: on the
corrugated surface, tangential components of both E and H
vanish.
 \div This can be true for both inductive (X>0) and
capacitive(X<0) surfaces.
 \div Induc In the limit $\psi \rightarrow 90^{\circ}$, $R_{TE} = R_{TM} \rightarrow -1$. Implication
corrugated surface, tangential components of bot
vanish.
This can be true for both inductive (2
capacitive(X<0) surfaces.
Inductive surface is inappropriate for ant In the limit $\psi \rightarrow 90^{\circ}$, $R_{TE} = R_{TM} \rightarrow -1$. Implication: on the
corrugated surface, tangential components of both E and H
vanish.
This can be true for both inductive (X>0) and
capacitive(X<0) surfaces.
Inductive surface In the limit $\psi \rightarrow 90^{\circ}$, $R_{TE} = R_{TM} \rightarrow -1$. Implication: on the
corrugated surface, tangential components of both E and H
vanish.
This can be true for both inductive (X>0) and
capacitive(X<0) surfaces.
Inductive surface
-
- 4 In the limit $\psi \rightarrow 90^{\circ}$, $R_{TE} = R_{TM} \rightarrow -1$. Implication: on the
corrugated surface, tangential components of both E and H
vanish.
4 This can be true for both inductive (X>0) and
capacitive(X<0) surfaces.
4 Inductive su
- The limit $\psi \rightarrow 90^{\circ}$, $R_{TE} = R_{TM} \rightarrow -1$. Implication: on the
corrugated surface, tangential components of both E and H
vanish.
 \div This can be true for both inductive $(X>0)$ and
capacitive $(X<0)$ surfaces.
 \div Inductive In the limit $\psi \rightarrow 90^{\circ}$, $R_{TE} = R_{TM} \rightarrow -1$. Implication: on the
corrugated surface, tangential components of both E and H
vanish.
This can be true for both inductive (X>0) and
capacitive(X<0) surfaces.
Inductive surface corrugated surface, tangential components of both E and H
vanish.
This can be true for both inductive $(X>0)$ and
capacitive $(X<0)$ surfaces.
Inductive surface is inappropriate for antenna applications
as it supports surfac vanish.
This can be true for both inductiv
capacitive(X<0) surfaces.
Inductive surface is inappropriate for anten
as it supports surface waves which do not
surface. Only capacitive surface is desirable.
Thus, a boundary co

Scalar Feed

Hybrid Mode Waveguide Feed: Hybrid Mode Waveguide Feed:
Minnett and Thomas (1966)
* Study of the focal field of a circularly

- Hybrid Mode Waveguide Feed:

Minnett and Thomas (1966)

→ Study of the focal field of a circularly symmetric parabolic

reflector, illuminated by a linearly polarized plane wave,

together with the concept of symmetric ra **Fig. 2014**
The Mode Waveguide Feed:
**Study of the focal field of a circularly symmetric parabolic
reflector, illuminated by a linearly polarized plane wave,
together with the concept of symmetric radiation field led to
 Ford Mode Waveguide Feed:**
 **Study of the focal field of a circularly symmetric parabolic

reflector, illuminated by a linearly polarized plane wave,

together with the concept of symmetric radiation field led to

the dev** The development of hybrid Mode Waveguide Feed:

innett and Thomas (1966)

Study of the focal field of a circularly symmetric parabolic

reflector, illuminated by a linearly polarized plane wave,

together with the concept Hybrid Mode Waveguide Feed:

Minnett and Thomas (1966)
 \div Study of the focal field of a circularly symmetric parabolic

reflector, illuminated by a linearly polarized plane wave,

together with the concept of symmetric
- Superior Mode Waveguide Feed:

Study of the focal field of a circularly symmetric parabolic

reflector, illuminated by a linearly polarized plane wave,

together with the concept of symmetric radiation field led to

the de innett and Thomas (1966)

Study of the focal field of a circularly symmetric parabolic

reflector, illuminated by a linearly polarized plane wave,

together with the concept of symmetric radiation field led to

the develop Study of the focal field of a circularly symmetric parabolic
reflector, illuminated by a linearly polarized plane wave,
together with the concept of symmetric radiation field led to
the development of hybrid mode waveguide

 \bullet It was shown that a waveguide to support the focal-field
hybrid waves, its boundary must satisfy $X_z.X_\xi = -\eta_0^2$, where
 X_z is longitudinal surface reactance and X_ξ is circumferential It was shown that a waveguide to support the focal-field
hybrid waves, its boundary must satisfy $X_z.X_{\xi} = -\eta_0^2$, where X_z is longitudinal surface reactance and X_{ξ} is circumferential
surface reactance, η_0 is rt the focal-field
 $.X_{\xi} = -\eta_0^2$, where
is circumferential
edance. hybrid waves, its boundary must satisfy $X_z.X_{\xi} = -\eta_0^2$, where (x) al-field

tal-field

, where

erential X_z is longitudinal surface reactance and X_{ξ} is circumferential was shown that a waveguide to support the focal-field
prid waves, its boundary must satisfy $X_z.X_{\xi} = -\eta_0^2$, where
is longitudinal surface reactance and X_{ξ} is circumferential
face reactance, η_0 is free-space wa ort the focal-field
 $X_{\xi} = -\eta_0^2$, where
is circumferential
edance. It was shown that a waveguide to sup
hybrid waves, its boundary must satisfy
 X_z is longitudinal surface reactance and
surface reactance, η_0 is free-space wave in
Transversely corrugated surface with a waveguide to support the focal-field
indary must satisfy $X_z.X_\xi = -\eta_0^2$, where
face reactance and X_ξ is circumferential
is free-space wave impedance.
ated surface with appropriate groove We as the surface to support the focal-field
hybrid waves, its boundary must satisfy $X_z.X_{\xi} = -\eta_0^2$, where
 X_z is longitudinal surface reactance and X_{ξ} is circumferential
surface reactance, η_0 is free-space It was shown that a waveguide to support the focal-field
hybrid waves, its boundary must satisfy $X_z.X_\xi = -\eta_0^2$, where
 X_z is longitudinal surface reactance and X_ξ is circumferential
surface reactance, η_0 is free It was shown that a waveguide to support the focal-field
hybrid waves, its boundary must satisfy $X_zX_{\xi} = -\eta_0^2$, where
 X_z is longitudinal surface reactance and X_{ξ} is circumferential
surface reactance, η_0 is t the focal-field
 $X_{\xi} = -\eta_0^2$, where

circumferential

dance.

ropriate groove

per wavelength,
 $=\infty$ and $X_{\xi} = 0$.

dinally grooved $*$ It was shown that a waveguide to support the focal-field
hybrid waves, its boundary must satisfy X_z , $X_{\xi} = -\eta_0^2$, where
 X_z is longitudinal surface reactance and X_{ξ} is circumferential
surface reactance,

-
- hybrid waves, its boundary must satisfy $X_z.X_\xi = -\eta_0^2$, where X_z is longitudinal surface reactance and X_ξ is circumferential surface reactance, η_0 is free-space wave impedance.
Transversely corrugated surface wi X_z is longitudinal surface reactance and X_{ξ} is circumferential
surface reactance, η_0 is free-space wave impedance.
Transversely corrugated surface with appropriate groove
depth and sufficient number of corrugat surface reactance, η_0 is free-space wave implementance reactance, η_0 is free-space wave implementation and sufficient number of corrugation approximately satisfies this condition with The condition can also be sat

1988
Th this backdrop,
P.J.B.Clarricoats and his research
Pradip Kumar Saha entered the frav **P.D.B.Clarricoats and his research student Pradip Kumar Saha entered the fray in 1968. Solution Set of the Set of the framework of the fra**

Example 18 Second Analytical Studier In this backdrop,
 **P.J.B.Clarricoats and his research student

Pradip Kumar Saha entered the fray in 1968.**
 **Aim: Study of Propagation and Radiation

Characteristics of Fast Waves i** In this backdrop,

P.J.B.Clarricoats and his research student

Pradip Kumar Saha entered the fray in 1968.

Aim: Study of Propagation and Radiation

Characteristics of Fast Waves in Corrugated

Circular Waveguides and Corr **In this backdrop,

P.J.B.Clarricoats and his research student

Pradip Kumar Saha entered the fray in 1968.**
 **Aim: Study of Propagation and Radiation

Characteristics of Fast Waves in Corrugated

Circular Waveguides and C** In this backdrop,

P.J.B.Clarricoats and his research

Pradip Kumar Saha entered the fray

Aim: Study of Propagation and R

Characteristics of Fast Waves in Con

Circular Waveguides and Con

Conical Horns

Study of Fast Wave Propagation in Transversely Corrugated Circular Waveguide

- Characteristic Equation
- Circularly Symmetric Modes
- Azimuthally Dependent Hybrid Modes
- Dispersion Diagrams
- Balanced Hybrid Condition

Lowest Hybrid Mode HE_{11}

- Field Pattern
- Power Flow
- •Attenuation

**Balanced Hybrid Condition
Perfect pattern symmetry and zero cross-polarization**
occur at the design frequency under "Balance **Perfect pattern symmetry and zero cross-polarization**
Perfect pattern symmetry and zero cross-polarization
occur at the design frequency under "Balanced
Hybrid" condition (BHC), when the corrugation depth **Balanced Hybrid Condition**

Perfect pattern symmetry and zero cross-polarization

occur at the design frequency under "Balanced

Hybrid" condition (BHC), when the corrugation depth

is about one quarter of the wavelength. **Balanced Hybrid Condition**

Perfect pattern symmetry and zero cross-polarization

occur at the design frequency under "Balanced

Hybrid" condition (BHC), when the corrugation depth

is about one quarter of the wavelength. **Balanced Hybrid Condition**

Perfect pattern symmetry and zero cross-polarization

occur at the design frequency under "Balanced

Hybrid" condition (BHC), when the corrugation depth

is about one quarter of the wavelength **Balanced Hybrid Condition**
Perfect pattern symmetry and zero cross-polarization
occur at the design frequency under "Balanced
Hybrid" condition (BHC), when the corrugation depth
is about one quarter of the wavelength.
Fo **Balanced Hybrid Condition**
Perfect pattern symmetry and zero cross-polarization
occur at the design frequency under "Balanced
Hybrid" condition (BHC), when the corrugation depth
is about one quarter of the wavelength.
Fo **Balanced Hybrid Condition**

Perfect pattern symmetry and zero cros

occur at the design frequency under

Hybrid" condition (BHC), when the corr

is about one quarter of the wavelength.

For large apertures (large wavegui **Balanced Hybrid Condition**

Perfect pattern symmetry and zero cross-polarization

occur at the design frequency under "Balanced

Hybrid" condition (BHC), when the corrugation depth

is about one quarter of the wavelength **Balanced Hybrid Condition**

Perfect pattern symmetry and zero cross-polarization

occur at the design frequency under "Balanced

Hybrid" condition (BHC), when the corrugation depth

is about one quarter of the wavelength Perfect pattern symmetry and zero cross-po
occur at the design frequency under '
Hybrid" condition (BHC), when the corrugat
is about one quarter of the wavelength.
For large apertures (large waveguide radii),
g (for BHC)

Sahara Condition (Bric), when the corrugation depth
is about one quarter of the wavelength.
For large apertures (large waveguide radii), slot depth
g (for BHC) $\approx \lambda/4$. For small apertures g>0.25 λ , being \approx
0.3 λ

Dimensionless Hybrid Factor $\overline{\Lambda}$

$$
\overline{\Lambda} = j\eta_0 \frac{H_z}{E_z} = -m \frac{(\beta_{mn}/k_0)}{F_m(k_{cmn}/r_1)}
$$

$$
F_m(x) = x \frac{J'_m(x)}{J_m(x)}
$$

 $\overline{\Lambda} = 0$ for TM modes; $1/\overline{\Lambda} = 0$ for TE modes $=$ \pm 1 for hybrid modes under BHC

Upper sign for HE_{mn} modes Lower sign for EH_{mn} modes

Transverse E Field

Attenuation in Corrugated Circular Waveguide

Attenuation in Corrugated Circular Waveguide
The Theoretical attenuation of HE_{11} mode under
balanced hybrid condition and over a band around the
frequency corresponding to BHC can be lower than **balanced hybrid condition**
The Theoretical attenuation of HE_{11} mode under
balanced hybrid condition and over a band around the
frequency corresponding to BHC can be lower than
the attenuation in a TE_{11} circular wav **Attenuation in Corrugated Circular Waveguide**
The Theoretical attenuation of HE_{11} mode under
balanced hybrid condition and over a band around the
frequency corresponding to BHC can be lower than
the attenuation in a Attenuation in Corrugated Circular Waveguide
The Theoretical attenuation of HE_{11} mode under
balanced hybrid condition and over a band around the
frequency corresponding to BHC can be lower than
the attenuation in a TE **Attenuation in Corrugated Circular V**
The Theoretical attenuation of HE_{11} n
balanced hybrid condition and over a band
frequency corresponding to BHC can be
the attenuation in a TE₁₁ circular wavegu
diameter $2r_1$. diameter 2r₁.

Transmission of Light in Fiber for Optical Communication

Mrs. Gwen MW Kao on behalf of **Professor Charles K Kao** Nobel Laureate in Physics 2009

> 8 December 2009 Aula Magna **Stockholm University**

> > The Chinese University of Hong Kong

 ≥ 5 at BHC \bullet $\overline{\mathbf{v}}$ $\boldsymbol{\omega}$ **at 1.5** \ast $\overline{\mathbf{B}}$ **H** frequency

5

Radiation From Corrugated Circular Waveguide

- Far-field Pattern by
- Hybrid Mode Radiation Fields
-
- Performance of Parabolic Reflector with Corrugated Waveguide Feed
- **Example 12 And September 12 And Se** • An Experimental Narrow-Flare (12o half flare) Corrugated Horn d Circular Waveguide

An Experimental Narrow-

Flare (12º half flare)

Corrugated Horn

Measured Patterns and Input

VSWR: 8.5 – 11.0 GHz
- HE_{11} Mode Radiation Patterns
VSWR: 8.5 11.0 GHz • Measured Patterns and Input

Theoretical Radiation Patterns of HE₁₁ Mode in Corrugated Circular Waveguide under BHC and at 1.5 times higher frequency

E-plane (——), H-plane (----)
Beamwidths of $\rm HE_{11}$ Radiation
Pattern of Corrugated Circular E-plane (——), H-plane (----)
Beamwidths of HE₁₁ Radiation
Pattern of Corrugated Circular
Waveguide as function of Pattern of Corrugated Circular Waveguide as function of Normalized Frequency $(r_1/r_0 = 0.9)$

Narrow Flare Corrugated Conical Horn

Experimental X-Band 12o Half Flare Corrugated Horn

Theoretical and Measured Patterns of Experimental 12[°] Half Flare Horn

Measured Input VSWR at the throat of the Experimental Narrow Flare Horn of 12[°] Half Flare Angle as Function of Frequency

Theoretically computed Reflection Coefficient at the junction of a TE_{11} circular waveguide and a corrugated circular waveguide as a function of normalized frequency for various waveguide parameters

Propagation and Radiation Characteristics of Wide-flare Corrugated Conical Horn

- Spherical Hybrid Modes in the Performance of Parabolic Horn and Aperture Field
- Far-field pattern by vector diffraction
- Radiation Field by Spherical Wave Expansion
- Computation of Phase-Centre Location
- Lens-corrected Scalar Feed
- Reflector with Scalar Feed
- An Experimental 30^o Half-Flare Corrugated Conical Horn
- Experimental Results
- Modified Scalar Horn with Corrugations only near Aperture

Theoretical Radiation Pattern of Corrugated Horn of 70° Half Flare Angle agrees almost exactly with experimental data of Kay's Scalar Horn

Measured Input VSWR at the throat of the Experimental Wide Flare Horn of 30o Half Flare Angle as Function of Frequency

Modified Wide-Flare Corrugated Conical Horn with Corrugations only near the Aperture

Excitation of Hybrid Modes in Corrugated section was computed by mode matching over the spherical cap at the junction.

Excitation of Modified Conical Scalar Horn P_m/P_{in} in for first six modes

- Modified Scalar Feed: Observations from Computed results

* Mode-matching equations were solved with 6 modes each in

sexual and un compated sections for different flam Modified Scalar Feed: Observations from Computed results

* Mode-matching equations were solved with 6 modes each in

corrugated and un-corrugated sections for different flare

angles. orthology and the corrugated sections from Computed results

Mode-matching equations were solved with 6 modes each in

corrugated and un-corrugated sections for different flare

angles.

The reflection coefficient of the i angles. Modified Scalar Feed: Observations from Computed results
 \bullet Mode-matching equations were solved with 6 modes each in

corrugated and un-corrugated sections for different flare
 \bullet The reflection coefficient of the in dified Scalar Feed: Observations from Computed results
Mode-matching equations were solved with 6 modes each in
corrugated and un-corrugated sections for different flare
angles.
The reflection coefficient of the incident T dified Scalar Feed: Observations from
Mode-matching equations were solve
corrugated and un-corrugated section
angles.
The reflection coefficient of the inexcitation of higher order modes in
are negligible.
The fraction of Modified Scalar Feed: Observations from Computed results
 \div Mode-matching equations were solved with 6 modes each in

corrugated and un-corrugated sections for different flare
 \div The reflection coefficient of the in ordified Scalar Feed: Observations from Computed results

Mode-matching equations were solved with 6 modes each in

corrugated and un-corrugated sections for different flare

angles.

The reflection coefficient of the inc Mode-matching equations were solved with 6 modes each in
corrugated and un-corrugated sections for different flare
angles.
The reflection coefficient of the incident TE₁₁ mode and
excitation of higher order modes in un-
-
-

